Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Type of study
Language
Document Type
Year range
1.
Atmosphere ; 13(9):1411, 2022.
Article in English | MDPI | ID: covidwho-2009932

ABSTRACT

Background: The current COVID-19 pandemic has demonstrated the enormous importance of maintaining good hygienic conditions in everyday indoor environments for the prevention of infectious diseases. This includes sanitization methods capable of significantly reducing the microbial load in the air and on surfaces. However, in line with the ecological transition, alternative systems for environmental sanitization with reduced environmental impact are urgently needed. The photocatalytic reaction using UV-C light-emitting diode (UV-C LED) lamps with short wavelengths, especially in the range of 200–280 nanometers (nm), can significantly reduce the microbial load, safeguarding the environment thanks to reduced energy consumption. The objective of this review is to describe the latest innovations in the use of UV-C LED technology in the sanitization of indoor environments, reporting the fundamental principles on which its activity relies. Methods: Two databases (PubMed, Web of Science), were searched, following PRISMA guidelines. Results: A total of 1348 publications were identified, of which 379 were assessed in detail and, of these, 16 were included in the review. Conclusions: This literature review highlighted that UV-C LEDs irradiation represents a valid, eco-sustainable sanitization method that could be exploited as an alternative to chemical compounds to contain indoor microbiological pollution in living and working environments.

2.
Int J Environ Res Public Health ; 19(3)2022 01 29.
Article in English | MEDLINE | ID: covidwho-1667146

ABSTRACT

Improving indoor air quality present in environments where people live is important to protect human health. This particularly applies to public transportation, where air quality may affect the health and safety of passengers, workers and staff. To provide better air quality, many buildings and transports are provided with heating, ventilation and air conditioning (HVAC) systems, which are always equipped with filters to retain the particulate present in the airflow, but they lack continuous air sanitization systems. In this study, a new UV-C LED and ionizer-based continuous sanitation air (CSA) system to be installed in a train HVAC was developed (international patent: N.PCT/IB2021/054194) and its sanitation efficacy against various microbial species (bacteria and fungi) was assessed. The device proved to be very effective at the microbial killing of aerodispersed microorganisms, both in its experimental configuration (ISO 15714:2019) and in a train setting. The installation of this CSA system on public transportation appears to be a promising solution to guarantee high microbiological air quality with a very low environmental impact due to its eco-friendly components.


Subject(s)
Air Pollution, Indoor , Sanitation , Air Conditioning , Air Pollution, Indoor/analysis , Heating , Humans , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL